Skip to main content
  1. Casa
  2. Espacio

Los principales observatorios espaciales que exploran el universo

El futuro telescopio James Webb inició la cuenta regresiva. Cuando sea puesto en órbita en 2021, marcará el ocaso del Hubble, que durante 30 años ha impulsado la exploración espacial. Pero no son los únicos «ojos» de la humanidad en el espacio, por lo que hemos reunido los principales observatorios espaciales en funcionamiento.

Los telescopios espaciales tienen la ventaja de que no sufren por las condiciones meteorológicas o la contaminación lumínica que aquejan a los observatorios terrestres. Además, su trabajo no se ve afectado por la la distorsión que genera la atmósfera, que reduce la calidad de las imágenes.

Recommended Videos

El primero fue lanzado el 18 de abril de 1968 con el Kosmos 215 de la Unión Soviética, el primer observatorio espacial del mundo. Con una misión que solo se extendió por 73 días y equipado con ocho telescopios, fue usado para estudiar la radiación solar. De ahí en adelante, han sido lanzados más de 20. Los que siguen son los principales observatorios espaciales en funcionamiento.

Telescopio espacial Hubble (HST)

Fecha de lanzamiento: 24 de abril de 1990.
Ubicación: órbita circular alrededor de la Tierra, a 593 kilómetros sobre el nivel del mar.
Peso y dimensiones: 11 toneladas. De forma cilíndrica, con una longitud de 13.2 metros y un diámetro máximo de 4,2 metros.
Tipo de telescopio: Reflector con un espejo primario de 2.4 metros
Responsables: NASA y ESA.

Imagen utilizada con permiso del titular de los derechos de autor

Conocido de forma inicial como Space Telescope (ST), debe su nombre actual al pionero de la astronomía estadounidense Edwin Hubble. Desde su puesta en órbita, el telescopio Hubble ha revolucionado la astronomía gracias a su visión privilegiada del espacio exterior.

Debido a sus capacidades para observar las zonas del lunas alrededor de Plutón.

Observatorio de rayos X Chandra (CXT)

Fecha de lanzamiento: 23 de julio de 1999.
Ubicación: órbita elíptica alrededor de la Tierra, lo que le permite alcanzar una altitud de 139,000 kilómetros (86.500 millas), más de un tercio de la distancia a la Luna.
Peso y dimensiones: 10.5 toneladas. De forma cilíndrica, con una longitud de 13.8 metros.
Tipo de telescopio: Wolter, con un lente primario de 1.2 metros
Responsables: NASA.

Telescopio espacial Chandra
Imagen utilizada con permiso del titular de los derechos de autor

Chandra fue el tercero de los grandes observatorios espaciales de la NASA, después del Hubble (1990) y el Observatorio de Rayos Gamma Compton, desintegrado en 2000. Destinado a observar rayos X blandos, ha sido usado para el estudio de galaxias lejanas.

Entre sus principales hallazgos, se encuentran la primera imagen de luz del remanente de la nebulosa del Cangrejo, otro remanente de supernova; y la primera emisión de rayos X fue vista desde el agujero negro Sagitario A.

Sonda espacial SOHO

Fecha de lanzamiento: 2 de diciembre de 1995.
Ubicación: Alrededor del punto L1 entre el Sol y la Tierra.
Peso y dimensiones: 4 toneladas. 4.3 metros de ancho, 3.7 metros de largo y 2.7 metros de alto.
Tipo: sonda espacial con doce instrumentos.
Responsables: NASA y ESA.

Observatorio espacial Soho
Imagen utilizada con permiso del titular de los derechos de autor

La sonda espacial SOHO es un observatorio solar que se utiliza para el estudio de la corona solar y las zonas magnéticas. Además de su misión científica, se ha transformado en una fuente clave de datos solares en tiempo real para predecir el clima espacial.

Es una de las cuatro naves espaciales –junto a Wind, ACE y DSCOVR- ubicadas en las proximidades del punto L1 Tierra-Sol, un punto de equilibrio gravitacional ubicado aproximadamente a 0.99 unidades astronómicas (AU) del Sol y 0.01 AU de la Tierra.

SOHO está equipada con doce instrumentos que pueden trabajar de forma independiente, una de sus principales contribuciones ha sido el descubrimiento de más de 3,000 cometas. De hecho, más de la mitad de los cometas conocidos han sido identificados gracias este observatorio solar.

Integral

Fecha de lanzamiento: 12 de octubre de 2002.
Ubicación: órbita elíptica, a una distancia mínima (periastro) de 9,000 kilómetros de la Tierra.
Peso y dimensiones: 4.4 toneladas. 5 metros de ancho, 2.8 de largo y 3.2 de alto.
Tipo: Lente principal de aberturas codificadas de 3.7 metros.
Responsables: ESA.

Observatorio espacial Integral
Considerado el observatorio de rayos gamma más sensible, tiene como misión detectar de la radiación energética que proviene del espacio. Es el primer observatorio capaz de captar de forma simultánea un objeto en rayos gamma, rayos x y espectro visible.

Sus principales objetivos son las explosiones violentas conocidas como estallidos de rayos gamma, fenómenos como explosiones de supernovas y regiones del Universo que se cree que contienen agujeros negros. Según ESA, desde su puesta en órbita ha impulsado grandes avances en la comprensión del universo de rayos gamma.

Proyectos en marcha

  • Telescopio espacial James Webb: Desarrollado por agencias de más de 17 países, sustituirá al telescopio Hubble. Uno de sus principales objetivos es observar algunos de los eventos y objetos más distantes del universo, como la formación de las primeras galaxias. Su lanzamiento está programado para 2021.
  • Telescopio espacial chino Xuntian: desarrollado por la agencia espacial china, tendrá la capacidad de observar el espectro visible y el ultravioleta cercano. Su principal instrumento será una cámara de 2.5 millones de pixeles, aunque también contará con un espectómetro. Estará diseñado par podrá acoplarse con la futura estación espacial china. Su lanzamiento está previsto para 2022.
Rodrigo Orellana
Ex escritor de Digital Trends en Español
Twitter, Facebook, Instagram, WhatsApp, Telegram, criptomonedas, metaverso, son algunos de los temas que aborda el periodista…
Descubren monstruo antiguo espacial: un chorro de radio de millones de años luz
Chorro de radio

Los astrónomos han descubierto un monstruo verdaderamente antiguo: un chorro de radio de 200.000 años luz de ancho, que se originó cuando el universo tenía menos del 10% de su edad actual. Observado con los telescopios Gemini Norte y Hubble, los astrónomos están estudiando el chorro para aprender sobre cómo los enormes agujeros negros emiten enormes cantidades de energía y cómo se formaron en el universo primitivo.
El chorro, llamado J1601+3102, tiene dos puntos, o lóbulos, que se extienden desde un punto central y cubren un ancho dos veces el tamaño de toda nuestra galaxia. Eso lo convierte en el chorro de radio más grande jamás visto en el universo primitivo, y en su centro hay un objeto llamado cuásar: el centro muy brillante de una galaxia, también llamado núcleo galáctico activo (AGN), que contiene un agujero negro supermasivo en su corazón.
"Estábamos buscando cuásares con fuertes chorros de radio en el universo temprano, lo que nos ayuda a comprender cómo y cuándo se forman los primeros chorros y cómo impactan en la evolución de las galaxias", explicó la investigadora principal, Anniek Gloudemans, de NOIRLab de la Fundación Nacional de Ciencias.
Los investigadores descubrieron que el chorro se formó cuando el universo tenía menos de 1.200 millones de años, y como referencia, el universo tiene alrededor de 13.800 millones de años ahora. Si bien se podría pensar que se necesitaría un enorme agujero negro para formar un enorme chorro, ese no parece ser el caso. El agujero negro justo en el centro de este chorro es más pequeño en comparación con otros cuásares.
"Curiosamente, el cuásar que alimenta este enorme chorro de radio no tiene una masa de agujero negro extrema en comparación con otros cuásares", dijo Gloudemans. "Esto parece indicar que no necesariamente se necesita un agujero negro excepcionalmente masivo o una tasa de acreción para generar chorros tan poderosos en el universo temprano".
Los investigadores no están seguros de por qué este agujero negro relativamente pequeño fue capaz de producir un chorro tan grande, o por qué otros agujeros negros similares no crean enormes chorros propios. También es raro ver chorros muy grandes en el universo temprano, por lo que quieren buscar más información sobre cuándo se formaron los primeros chorros.
A pesar de que es enorme, el chorro recientemente descubierto está muy lejos, por lo que los investigadores tuvieron que usar datos de telescopios terrestres y telescopios espaciales para estudiarlo. "Es solo porque este objeto es tan extremo que podemos observarlo desde la Tierra, a pesar de que está muy lejos", dijo Gloudemans. "Este objeto muestra lo que podemos descubrir combinando la potencia de múltiples telescopios que operan en diferentes longitudes de onda".
La investigación se publica en The Astrophysical Journal Letters.

Leer más
El Hubble capta una imagen de un espectacular «volcán estelar»
telescopio espacial hubble volcan estelar volc  n

Una magnífica imagen del Telescopio Espacial Hubble muestra una estrella cercana llamada R Aquarii que es el sitio de una actividad dramática: erupciones violentas de materia que es arrojada al espacio a su alrededor. Apodada informalmente como un "volcán estelar" por la forma en que arroja materia como lava que arroja desde las profundidades del subsuelo, la estrella es una imagen impresionante, pero también contiene una sorpresa inesperada. La estrella no es un solo objeto, sino dos.

Conocida como una estrella variable simbiótica, consiste en una gigante roja y una enana blanca que orbitan entre sí en una danza continua. La gigante roja pulsa, y su temperatura y brillo cambian durante un período de 390 días. Esto se cruza con el período orbital de 44 años de la enana blanca. Cuando la enana blanca comienza a acercarse a la gigante roja, succiona parte de su gas a través de la gravedad y acumula el disco a su alrededor hasta que colapsa y explota, lanzando chorros de material. Entonces el ciclo comienza de nuevo.
Esta imagen muestra R Aquarii, una estrella binaria simbiótica que se encuentra a solo unos 1.000 años luz de la Tierra en la constelación de Acuario. Se trata de un tipo de sistema estelar binario formado por una enana blanca y una gigante roja que está rodeada por una gran nebulosa dinámica. NASA, ESA, M. Stute, M. Karovska, D. de Martin y M. Zamani (ESA/Hubble)
"Este estallido expulsa poderosos chorros vistos como filamentos que salen disparados del sistema binario, formando bucles y rastros a medida que el plasma emerge en serpentinas", explican los científicos del Hubble. "El plasma es retorcido por la fuerza de la explosión y canalizado hacia arriba y hacia afuera por fuertes campos magnéticos. El flujo de salida parece doblarse sobre sí mismo en un patrón en espiral. Los filamentos brillan en luz visible porque son energizados por la radiación abrasadora del dúo estelar que es R Aquarii. La nebulosa alrededor de la estrella binaria se conoce como Cederblad 211, y puede ser el remanente de una nova pasada.

Leer más
James Webb descubre un exótico «mundo de vapor»
james webb descubre exotico mundo vapor exoplaneta

Nuestro sistema solar tiene una amplia variedad de tipos de planetas, desde el diminuto y rocoso Mercurio hasta el enorme gigante gaseoso Júpiter y el distante gigante helado Urano. Pero más allá de nuestro propio sistema, hay aún más tipos de exoplanetas, incluidos los mundos acuáticos cubiertos de océanos y donde la vida podría prosperar. Ahora, los investigadores que utilizan el telescopio espacial James Webb han identificado un nuevo y exótico tipo de planeta llamado mundo de vapor, que tiene una atmósfera compuesta casi en su totalidad de vapor de agua.

El planeta, llamado GJ 9827 d, fue examinado por el Telescopio Espacial Hubble a principios de este año y tenía a los investigadores tan intrigados que quisieron volver a verlo más de cerca usando Webb. Descubrieron que el planeta, que tiene aproximadamente el doble del tamaño de la Tierra, tenía una atmósfera muy diferente del hidrógeno y el helio típicos que se ven habitualmente. En cambio, estaba lleno de vapor caliente.

Leer más